
www.manaraa.com

Protecting the Quality of Service of Existing Information Systems�
Kevin S. Beyer Miron Livny Raghu Ramakrishnan

Computer Sciences Department
University of Wisconsin, Madison WI 53706, USA

beyer,miron,raghu@cs.wisc.edu

Abstract

Organizations that offer external access to their data
need a mechanism that ensures a desired level of service
for local users. We propose such a mechanism, called the
provider agent (PA) architecture, that protects local users
by ensuring a (DBA specified) quality of service for local re-
quests in the face of computational demands made by exter-
nal requests. The PA is a general purpose solution that en-
hances most information systems currently available. The
novelty of our approach is the combination of request pro-
filing with load control mechanisms to improve both pro-
tection and performance, while not requiring any modifica-
tions to the underlying information system. We demonstrate
the effectiveness of the proposed techniques with a proto-
type PA for a commercial DBMS.

1. Introduction

People want access to information across organizational
boundaries, and information systems are becoming increas-
ingly accessible through integration technology. However,
each system is usually owned by one organization, and has
a primary purpose that is more important than this new, ex-
ternal access. For example, accessing a customer’s order
information during a sales call is probably more pressing
than determining the number of widgets sold last month.

In this environment, the local users are recognized as the
owners of the system, and the external requests should be
processed only when the owners allow it. If the site does not
take precautions, then the external workload could easily
disrupt the local service. The damage caused by a heavy ex-
ternal workload is usually a large increase in local response
time, but the damage could also be unforeseen failures of lo-
cal requests due to limited resources (e.g., a lack of memory
or connections).�This work was supported in part by ORD contract 144-ET33, a Presi-
dential Young Investigator award, and NASA research grant NAGW-3921.

One way to keep external activity from interfering with
local users is to replicate the existing system. The external
requests cannot interfere with local users since they are not
using the same system. However, this solution is not al-
ways acceptable for the following reasons. First, the cost of
creating and administering a second system could be pro-
hibitive. Second, the external users might need access to
up-to-date information. Third, a demand is still placed on
the local users system when the replicated system is period-
ically updated, and that demand, although more predictable,
still needs to be scheduled. Fourth, if the external requests
are prioritized, replicating the system for each priority level
is infeasible. Finally, replicating the system partitions the
computing resources, so one system could be idle while the
other is overloaded. For these reasons, we focus on an un-
replicated solution.

External
Workload

Local
Workload

Provider
Agent

Data
Provider

Figure 1. Provider Agent Architecture

This paper describes the architecture of a system, called
the Provider Agent (PA), that protects the local quality of
service of a data provider in the face of external processing
demands. The PA mediates between the provider and the
external world (see Figure 1), and extends the traditional
integration “wrapper” (e.g., [4, 23]) with resource manage-
ment. The architecture is designed to work with any type of
data provider available today, for example, a DBMS, a Web
server, an FTP server, or even data generating programs like
a simulation system. The PA does not mandate any changes
to the underlying data provider or the existing (local) appli-
cations.

In designing the PA, we used request profiling and dy-
namic load control techniques to protect the local users.
Load control transforms the worst case external workload
from disastrous to predictable and acceptable. Profiling en-
ables the administrator to specify load controls based upon



www.manaraa.com

query resource requirements rather than treating all requests
the same, regardless of the impact of the request.

To evaluate the effectiveness of these techniques, we
implemented a prototype PA for a relational DBMS. We
found that our load control mechanisms, which are imple-
mented outside the DBMS, effectively maintain the local
quality of service at a predefined level, and our profiling
technique dramatically improves the throughput of mixed
external workloads.

In the remainder of this paper we further motivate the
PA by describing some potential applications in Section 2.
Section 3 discusses our measure of success. In Section 4 we
detail the PA load control and profiling mechanisms. Sec-
tion 5 describes an implementation of the PA for a commer-
cial DBMS and Section 6 presents the performance results.
The remaining sections describe related work (Section 7),
future work (Section 8), and conclusions (Section 9).

2. Applications

The PA is applicable to a broad range of scenarios.
For example, when an enterprise connects its disparate de-
partmental databases into a multi-database, the PA would
ensure that the large ad-hoc queries posed to the multi-
database by someone in the marketing department do not
overwhelm any of the underlying production databases.
When a company offers order tracking information to In-
ternet users, the PA prevents the status requests from dis-
rupting order processing.

For a non-database example, consider a web server that
is about to be searched by an automatic indexing agent. If
the agent arrives during a peak period of the day, it would
be useful to delay its requests until an off-peak time or at
least control the rate at which the it accesses the data. The
service provided by the indexing sites is invaluable to web
users that are trying to locate information, so simply reject-
ing the request is probably not acceptable. The current so-
lution is to rely upon the agent writers to space requests to
an individual server [15, 8]. The first problem with this ap-
proach is that the web site administrator must rely on the
agent writer to be conscientious and careful when writing
it. The second problem is that at different times during the
day, the server might be able to process the requests at a
much higher rate. Why should the agent make arbitrary de-
cisions about when and how frequently the web server is
accessed when the server is much more capable to answer
these questions? If the indexing agent were to access the
web server through a PA, then the PA would ensure that the
agent does not drastically interfere with the web servers re-
sponse to normal requests.

3. Quality of Service

The primary concern in this paper is the quality of ser-
vice (QoS) offered to the local users. Although many QoS
measures exist, we use changes in the response times ex-
perienced by the local users to illustrate the protection of-
fered by a particular PA policy. Instead of summarizing
the response times into a single number like the average re-
sponse time, we use the cumulative distribution of the local
response times as our QoS measure.

Only when the local users are satisfied can the PA con-
sider improvements in external processing. Two schedul-
ing policies cannot be compared on the basis of external
performance without considering the local QoS. In com-
paring external performance, we use the throughput rather
than response time because we are more interested in the
amount of work completed than how quickly the work was
performed.

4. Mechanisms

The PA achieves its objectives through a variety of load
control mechanisms. Each of the mechanisms presented in
this section describes a way that the PA can control when
and how a particular external job is run. The merits of load
control are well known, dating back to operating systems
work of the ’60s and ’70s [11, 6]. The novelty of our ap-
proach is in extending these ideas to the protection of the
local QoS in the presence of an unknown external workload
without changing the existing system, in our definition of
fractional MPL, and in combining load control with query
profiling.

4.1. Integer MPL

Adjusting the multiprogramming level (MPL), by def-
inition, controls the maximum number of active requests
in a system. By limiting the number of external jobs, the
DBA controls the worst case performance of the local work-
load. Theoretically, by constraining the external workload
to a finite MPL, a stable local workload will never become
unstable by running external jobs (i.e., the number of out-
standing local requests will not go to infinity). Unfortu-
nately, the number of local requests in the system, will con-
tinue to increase until the system again stabilizes, so the lo-
cal response times can become unacceptable or the system
can run out of some critical resource (e.g., network connec-
tions).

MPL is a simple and effective control because it
smoothes the external service demands by queuing requests
outside of the provider, but it has several weaknesses. First,
MPL is an integer value, so the impact on the local users
cannot be fine-tuned, and in particular, if an MPL of one



www.manaraa.com

causes too great of an impact, then external queries can-
not be processed (see Sections 4.2 to 4.4). Second, MPL
does not consider which resources will be affected, so the
DBA must plan for the worst case of all the external requests
accessing the same device (see Section 4.5). Third, small
external requests get poor response times because they are
forced to wait behind large requests (see Section 4.5). Fi-
nally, slow external consumers tie up provider connections
and delay the processing of other external requests (see Sec-
tion 4.6).

4.2. Fractional MPL via Spacing

If the response times of the local requests are still unac-
ceptable even after an MPL is applied, the external requests
can be further subdued by spacing job executions. Spac-
ing jobs reduces theaverageMPL, and thus allows a frac-
tional MPL to be specified. Spacing jobs further reduces
the amount of time that local jobs must wait due to external
jobs and gives the system time to recover from any short-
term resource deficit.

The interval between jobs can be specified in several
ways. In its simplest form, a space can be a fixed time pe-
riod. For example, after every job, pause for 10 seconds. A
second way to define the space is based upon the amount of
resources consumed by the job, which means that the pause
after large jobs is longer than after short jobs. One last way
to define spacing is based upon the amount of time the job
spends in the provider. For example, if the space is speci-
fied as 100% and a job executes for 30 seconds, then the PA
would wait an additional 30 seconds before allowing an-
other job to enter the system. This last type of spacing not
only responds to the length of the job, but it also responds
to how busy the system is. Another advantage of this defi-
nition of spacing is that it correlates directly with MPL; the
effective MPL is defined by:MPLe� = MPLactspacing + 1
For example, an MPL of 0.5 can be achieved with an MPL
of 1 and a 100% spacing, and an MPL of 1.5 can be
achieved with an MPL of 2 and a 33% spacing.

However, the effect of spacing is not identical to that of
MPL, because the pressure on the system oscillates. While
an external job is running, the local jobs experience higher
response times, and while no job is running, the response
times are lower. This oscillation implies that an MPL of
two with 100% spacing does not control the system in the
same way as an MPL of one (but in either case, the average
number of external requests running is one).

4.3. Suspending Jobs

Instead of spacing between external jobs, the jobs can
be run more slowly by placing the spaces between sub-job
units of work. The advantage of this technique is that a large
job behaves like a group of small jobs, therefore the aver-
age local response time is achieved in a smaller time period.
This technique also allows external jobs to use a processor
sharing scheduling policy, although the quanta would be rel-
atively large. We identified three ways of slowing down a
job: intra-job spacing; suspending jobs; and dividing jobs.
The effectiveness of these techniques depends upon the type
of provider and the type of requests.

Intra-job spacing places an idle period between every
block of the result. For example, the space could be placed
between every 100 tuples fetched from a DBMS. If a result
buffer exists between the provider and the PA, then intra-job
spacing might not slow the external requests at all because
the provider is filling the buffer while the job is sleeping,
but the effect can be diminished by using larger block sizes.
A more difficult problem with using intra-job spacing is the
amount of data in the result might not correspond with the
amount of work needed to find the result. For example, if
an aggregate is applied to a large query, the result is one
tuple but the query might execute for an hour. The spac-
ing should be based upon the amount of work done at the
provider, rather than the size of the result.

Intra-job spacing can be generalized to job suspensions.
When the system load is high, suspend the job until the sys-
tem recovers. If a job is monopolizing an MPL unit for too
long, suspend it and let another job run instead. Unfortu-
nately, many providers offer no way to suspend a job except
when its result buffer is filled. A provider with a feature like
the DB2 Governor Facility could assist the PA by automat-
ically suspending the job after each unit of work.

Another technique that the PA can use to slow the exe-
cution of a job is to break the job into smaller jobs. The
smaller jobs can then be scheduled using job spacing. Un-
fortunately, dividing jobs is often difficult or impossible.

The major drawback to all of these techniques is that they
hold resources, like disk and memory buffers, locks, and
connections, for a longer period of time. If a suspended job
were holding read locks on some data and a local job wanted
to update that data, then suspending the job actually slows
down the local job. This problem still exists even when di-
viding the job into smaller jobs. If each of the smaller jobs
are executed in a separate transaction, the combined answer
could be inconsistent, so the jobs should be run in one trans-
action which implies that locks will be held between job
executions.



www.manaraa.com

4.4. Feedback

In this section, we describe a feedback mechanism that
monitors the utilization of key resources, for example, the
disk drives, CPU, network, and memory, to decided when
to start and stop jobs. This mechanism can detect periods
of relatively low activity, similar to the way the Condor sys-
tem [16] finds idle resources to run batch programs. If the
local workload experiences periods of high and low activity
throughout the day, the PA can run external jobs during the
periods of low activity. If an external job is running when
the system is experiencing a heavy load, the PA can kill or
suspend the job and restart it when the load decreases.

The feedback data is used to define the spacing of exter-
nal jobs. External jobs are allowed to start only when the
utilization of the busiest device is below some threshold.
The mechanism can be extended so that if the utilization of
some device exceeds another threshold, an external job is
suspended or killed. The advantage of the feedback mech-
anism is that it responds to changes in the local workload.
For example, if the system is under a heavy load, feedback
will keep the PA from starting a job, while spacing must oc-
casionally start a job to determine that the system is indeed
still busy.

The feedback mechanism is controlled by three parame-
ters: the threshold that determines when to take action, the
sampling interval, and the moving average time window.
The utilization is sampled from the provider or the operating
system by the PA once per sampling interval and averaged
with the last few samples.

The sampling interval controls the resolution of deci-
sions within the PA. As the sampling interval gets smaller,
the PA get a more detailed view of the system. If the sam-
pling interval is set too low, the overhead of sampling will
adversely affect performance. Conversely, if the sampling
interval is too high, the PA becomes sluggish because as
far as the PA is concerned, the state of the provider has not
changed. The proper setting for the sampling interval de-
pends upon the duration of the external jobs and the volatil-
ity of the local workload.

The moving average time window controls how respon-
sive the PA is to changes in the provider. A small time win-
dow means the PA will react quickly, but if the window is
too small the PA tends to over-react. If the time window is
longer, the PA is more tentative and responds slowly to both
increases and decreases in utilization. When using feedback
to detect changes in the workload, the moving average time
window should be long enough to get a reasonable estimate
of the true average. If the goal is to detect when no lo-
cal jobs are using the system, the window should be small,
perhaps eliminating the moving average altogether. When
controlling the job spacing, the size of the window depends
upon the duration of the external jobs. The window should

be long enough to at least cover the execution of the job and
the desired spacing.

4.5. Profiling

Information about the potential resource consumption of
an external job is invaluable to the PA, but when an external
requests arrives it is not tagged with any such information.
As discussed in Section 4.1, one of the major drawbacks of
limiting the MPL is that small jobs are forced to wait be-
hind large jobs. But by using the job profile information,
the PA can schedule small jobs differently from large jobs.
From the perspective of protecting the local users, schedul-
ing small and large jobs differently is intuitively reasonable
because a single small job is not as likely to seriously im-
pact the performance of the system.

Priority SchedulingNo Profiling Separate Queues

F
C

F
S

Jo
b 

C
os

t

New Jobs

F
C

F
S

F
C

F
S

New Jobs

Profiler

Reject

New Jobs

Profiler
Job Cost Reject

Figure 2. Queuing Strategies

The profile information can be used in a variety of ways
(see Figure 2). One possible strategy groups jobs that per-
form less than 10 I/Os into one group, between 10 and
10,000 into a second group, and rejects any job that is ex-
pected to do more than 10,000 I/Os. Each group is given its
own queue and scheduling policy (MPL, spacing, etc.). The
maximum MPL in this case is the sum of the MPLs for each
group.

Another strategy uses a single queue and scheduling pol-
icy, but orders the queue by the number of expected I/Os.
With this strategy, a small job would wait behind at most
one job that was longer than it (because the longer job was
already executing when the small job arrived). If the MPL
were more than one the small job must wait for only one job
to complete.

Notice that with both of the strategies, absolute accuracy
of the profile is not necessary. As long as the profiles are ac-
curate relative to one another, both schemes function prop-
erly, except when a job is rejected. Occasionally, a profile
could be completely wrong. The PA must ensure that the



www.manaraa.com

use of an incorrect profile will not detrimentally affect the
protection that it provides. One way to provide insurance
against running a job with a bad profile is to place a time
limit on the execution of a job based upon the job’s pro-
file. The PA should also allow the administrator to accept a
request that was mistakenly rejected.

When the profile contains details regarding the individ-
ual resources that a job is expected to use, the PA can more
fully utilize the the providers resources. Either of the above
strategies could be extended, for example, with a policy that
allowed up to 5 jobs to run concurrently (MPL=5) as long
no two jobs accessed the same disk drive.

Many data providers estimate the cost of executing a job
without actually executing it. For example, a DBMS es-
timates plan costs during optimization. Unfortunately, this
information is usually not exported by the provider — many
DBMSs discard the cost estimates once the plan is pro-
duced. The PA could use the plan and reapply the statistics
that the DBMS used to reconstruct the profile, but often the
statistics are also not exported.

A work-around to these limitations is to replicate the pro-
filer in the PA, similar to the approach taken in the Pegasus
project at HP [7]. The profiler will frequently consult cata-
log information, so to avoid placing an additional strain on
the provider, all of the needed catalog information should
also be replicated within the PA. The advantage of using the
provider’s profile is that no effort is duplicated and the pro-
file will generally be more up-to-date than the PA’s profile,
for example when an index is added or dropped but the PA
has not been updated. When using the provider to produce
the profile, the profiling should also be scheduled.

4.6. Buffering

Until now, we have not considered the rate at which the
external users consume their results. We implicitly assumed
that the results were consumed as quickly as they were pro-
duced. What happens when results are consumed slowly?
Assume that the only control was an MPL of one. If one
job decided not to consume any of its results for a while,
the PA could not process any additional requests and the
job would be holding resources (e.g., locks) for a long time.

One way to limit the impact of a slow consumer is to
enforce a maximum execution time or a minimum transfer
rate. If the constraints are violated, the job is suspended
or killed and another job takes its place. A more forgiv-
ing strategy places a buffer between the PA and the exter-
nal client. If the buffer is large enough, the PA can pull
the entire result out of the provider as quickly as possible
and allow the job to proceed as slowly as it wishes. The
provider is no longer impacted by the slow consumer, and
the PA can execute another job. Of course, the same prob-
lem could happen with the next job, and eventually the PA

would run out of buffer space. When faced with this situa-
tion, the PA must either kill one of the slow jobs and reclaim
its buffer space, or the PA must stop executing jobs and wait
for enough buffer space to clear.

The buffer between the PA and the client can be both
main memory and disk pages. All of the buffer space can
be pooled together and shared among all of the PA clients.
The page size should be relatively large since all I/O within
one connection will be sequential. When swapping out a
page to disk within one connection, the most recently filled
page should be sent to disk. When choosing a page to swap
out from all connections, the page least likely to be accessed
should be swapped out. To find the least likely page, letri
denote the rate at which connectioni is consuming pages,
anddi denote the distance of the last page of connectioni
from the head of the queue. Thenti = di=ri denotes the
expected time until the last page is referenced. The least
likely page to be accessed is the page with the maximum
expected reference time.

4.7. External Priorities

The PA can be extended to support priorities among ex-
ternal requests. The techniques used to enforce priorities are
similar to the techniques used in Section 4.5 to take advan-
tage of profile information. One queue ordered by priority
can be used to essentially achieve absolute priorities. Mul-
tiple queues, one per priority, with the total MPL divided
among the queues based upon priority achieves relative pri-
orities. The other mechanisms can also be extended with
priorities. For example, when a job must be suspended or
killed, choose the job with the lowest priority.

4.8. Provider Specific

Each provider comes with its own set of features that
could be used to assist the PA in its task. For example,
some providers have separate buffer pools based upon user-
id, some have prefetching, and others have priority schedul-
ing. We encourage the use of these features, but do not
discuss them further.

5. Implementation

We implemented a prototype PA to experiment with the
mechanisms and evaluate policies described in the previ-
ous section. This section describes the design decisions we
made while implementing the PA for a commercial rela-
tional DBMS. Figure 3 depicts basic structure of the PA,
and the components of the PA are described below.

Profiler: When a request arrives at the PA, it is profiled to
estimate its resource needs and the expected impact that this



www.manaraa.com

Scheduler

Provider
Agent

Local
Users

Operating System

Provider (DBMS)

Users
Ext.

Mon.
Prov.

Mon.
OS

Exec.

Mgr.
Buffer

Profiler

Figure 3. Provider Agent Architecture

request will have on the provider. The profiler is essentially
a query optimizer designed to mimic the provider’s opti-
mizer. We chose to replicate the query optimizer inside the
PA because the DBMS that we considered did not export the
cost estimate. The goal of the profiler is not to find the best
plan, but the plan that is expected to be produced by the
provider. If the PA maintains additional statistics that the
provider does not consider, the statistics should not be used
during plan generation, but once the plan is chosen the PA
can use the additional statistics to produce a better profile.

The profiler will frequently consult catalog information.
So to avoid placing an additional strain on the provider, we
cached all of the catalog information within the PA. Al-
though not implemented in our prototype, the PA must have
some mechanism for updating its statistics and becoming
aware of new database objects. The mechanism could be
automatic updates, or the administrator could update the
catalogs as needed.

Scheduler: After a request is profiled, it is queued until
the scheduler decides that the request can be safely exe-
cuted without adversely affecting the local requests. This
component uses the mechanisms described in Section 4 to
enforce the policies established by the administrator, and
in the next section, we evaluate the effectiveness of several
possible schedulers.

Executor: An executor is the provider client that processes
requests on behalf of the PA and its external clients. The ex-
ecutor contacts the external client to inform it that its job is
ready to be processed. The executor then sends the request
to the provider, receives the result, and sends it to the client,

either directly or through the buffer manager. Our current
prototype does not include a buffer manager, and in our ex-
periments, external clients consumed results as quickly as
possible.

System Monitors: The monitors periodically sample statis-
tics provided by the operating system and the provider to in-
form the scheduler about current resource utilizations. The
OS monitor was the only component of the PA that ran on
the same machine as the provider because the operating sys-
tem we used did not allow remote applications to directly
obtain OS statistics.

6. Experiments

In this section, we evaluate the effectiveness of the key
mechanisms of the prototype PA. We demonstrate the need
for local QoS protection by running a moderately heavy ex-
ternal workload without the PA. Although we can disrupt
local processing to an arbitrary degree, we show that even
a moderate load can cause a 20 times increase in average
response times.

Table 1. Experiment Parameters
Class Parameter Setting
local #terminals 40

inter-arrivals exp(0.2) sec.
queries 10 compiled point selects

with non-clustered index
external MPL 0 - 20

#jobs infinite
queries range count, 25-75% of

relation with clustered index
system #disks 1

#relations 7
tuple size 208 bytes
relation size 12MB
data cache 7.4MB of 1 page blocks

5.0MB of 8 page blocks
duration 25 minutes

We then add the PA and show that load control with spac-
ing allows the DBA to set the worst-case performance of
the local workload. Once we establish that the basic load
control mechanism is effective at controlling the perfor-
mance degradation, we improve the PA by using a dynamic
load control mechanism. We show that the dynamic con-
trol responds to the local workload by allowing more exter-
nal jobs to be processed when the system is under-utilized.
Lastly, we demonstrate that profiling dramatically improves
the throughput of small external jobs in a mixed external
workload.



www.manaraa.com

0

0.2

0.4

0.6

0.8

1

0 5 10 15

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
of

 L
oc

al
 R

es
p.

Local Response Time (sec.)

MPL=0
MPL=20

Figure 4. Impact of heavy external load

We generated a synthetic workload for the experiments,
but we used our prototype PA and a current version of a
commercial DBMS to ensure that our results were realistic.
The local workload modeled a transaction processing sys-
tem. We ran one experiment that performed updates to ver-
ify that updates did not unduly affect our results, but in the
rest of the experiments the transactions were read-only. The
external workload modeled exploration queries that needed
to perform scans over large portions of the data. The exper-
iment parameters are summarized in Table 1.

6.1. Experiment 1: No Control

To demonstrate the impact that external requests can
have on the local response times, we ran a constant exter-
nal workload of 20 queries. Figure 4 shows the cumulative
distributions of the local response times over the 25 minute
experiment. An MPL of 20 increased in average response
over 20 times more than the response when no external jobs
were run. When we pushed the system harder, we inad-
vertently caused a large percentage of local requests to fail
because of a lack of memory needed to run the queries. No-
tice even a small period of high external activity is enough
to wreak havoc on the hapless local users.

6.2. Experiment 2: Fixed MPL

In Figure 5, we show that the local response time can be
controlled by adjusting the average number of external re-
quests in the system via MPL and spacing. Decreasing the
MPL shifts the entire distribution of response times towards
the response time curve when no external queries were run
(MPL=0). For this particular external workload, increasing
the MPL beyond 1 actually decreases the throughput of the
external requests because the competition between external

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
of

 L
oc

al
 R

es
p.

Local Response Time (sec.)

MPL=0.0
MPL=0.5
MPL=1.0
MPL=1.5
MPL=2.0
MPL=2.5
MPL=3.0

0

20

40

60

80

100

120

0 5 10 15 20

E
xt

er
na

l C
om

pl
et

io
ns

MPL

Figure 5. Fixed MPL Control

0

0.2

0.4

0.6

0.8

1

0 5 10 15

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
of

 L
oc

al
 R

es
p.

Local Response Time (sec.)

MPL=0
MPL=1
MPL=2
MPL=3

MPL=20

Figure 6. Fixed MPL with Updates

jobs changes the disk access pattern from sequential to ran-
dom access.

We ran a similar experiment except that each local trans-
action updated the last record read after a 3 second delay.
Figure 6 shows that the external MPL still controls the lo-



www.manaraa.com

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
of

 L
oc

al
 R

es
p.

Local Response Time (sec.)

MPL=0
Add=60%
Add=70%
Add=80%

MPL=1

0

20

40

60

80

100

120

0 20 40 60 80 100

E
xt

er
na

l C
om

pl
et

io
ns

Add Threshold (%Utilization)

Figure 7. Dynamic MPL Control

cal response time, therefore the techniques described still
function properly in the presence of updates.

6.3. Experiment 3: Dynamic MPL

Figure 7 illustrates that by adjusting the add threshold,
the utilization feedback can control the spacing of exter-
nal requests much like fixed spacing. The advantage of this
feedback mechanism is that it can aptly avoid periods when
the local users place a heavy load on the system, or take ad-
vantage of periods of low activity. Figure 8 shows the dif-
ference between spacing and feedback. When we increased
the average local interarrival time from 0.2 seconds to 0.4
seconds (i.e., decreased the local demand), the dynamic ver-
sion kept the local users at the same QoS, but allowed more
external work to be completed.

6.4. Experiment 4: Profiling

Profiling allows the PA to keep small jobs from waiting
for large jobs to complete. This experiment, which is sum-
marized in Table 2, illustrates the need for profiling by run-
ning an external workload with both large and small jobs.

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
of

 L
oc

al
 R

es
p.

Local Response Time (sec.)

MPL=0.5 High Local
MPL=0.5 Low Local

Add=80% High Local
Add=80% Low Local

0

200

160

120

80

40

Fixed Dynamic

High Local

45 48

Fixed Dynamic

Low Local

192

116

E
xt

er
na

l C
om

pl
et

io
ns

Figure 8. Dynamic vs. Fixed MPL

The arrival times of the queries were uniformly distributed
over the 25 minute experiment. We assume that the admin-
istrator decided that they wanted at most one large query
in the system at a time. Furthermore, they chose a dynamic
MPL with an add utilization of 70%. In the first run, the pro-
filer was not used, so small queries entered the same queue
as the large queries. In the next run, the profiler was used,
and the administrator decided that at most two small queries
could enter the system at a time as long as the utilization was
below 90%. So in this case, the PA scheduler consisted of
two queues, one for small queries and one for large queries.

The results of the experiment are shown in Figure 9. The
top chart shows that allowing the two small queries to ex-
ecute along with the large query had little impact on the
local QoS. The chart on the bottom, however, shows that
the throughput of the small queries increased by 25 times
when profiling was used, with only a small decrease (13%)
in the throughput of the large queries.



www.manaraa.com

Table 2. Mixed External Workload Parameters

Class Parameter Setting
large MPL 1
external add util. 70%

#jobs 76
queries range count, 25-75% of

relation with clustered index
small MPL 2
external add util. 90%

#jobs 2530
queries point select with

non-clustered index

7. Related Work

Our work inherits much from the work on operating
system load control [11, 6]. Our contribution is in ap-
plying load control in a novel way to protect the local
QoS. A significant amount of work on database scheduling
has also been completed, especially on memory allocation
[12, 10, 17, 18, 3, 5]. The main difference between our
work and the database scheduling is that ours exists outside
the database and is not specific to any particular DBMS.

A few vendors have some load control mechanisms sim-
ilar to ours. IBM’s DB2 for MVS [14] offers many tuning
parameters, but it does not have our fractional MPL and
profiling mechanisms. NCR’s DBQM [20], which was de-
veloped concurrently with our research, includes many of
the features described in this paper, but is specific to NCR’s
Teradata DBMS. In particular, DBQM uses both feedback
and query profiles to schedule the external workload.

Two other classes of applications that extend the
scheduling of DBMSs are available: Query Analyzers and
Transaction Processing (TP) Monitors. Query analyzer
products are sold, for example, by Platinum Technologies
(Plan Analyzer, DB Analyzer, SQL-Spy, Detector) [21],
Blue Lagoon (DBProfiler), and MicroStrategy (DSS Ad-
ministrator) [19]. The analyzers provide a feature like our
profiler to estimate the cost of executing a query before ac-
tually running it. The difference between query analyzers
and our project is that the analyzers use this information
to warn users and developers of poorly formed queries that
could consume large amounts of resources, while we use
the profile for scheduling. An exception to this is DSS Ad-
ministrator which appears to use the profile information to
schedule the queries from their Decision Support System
(DSS) product.

TP Monitors are sold by Transarc (Encina [9]), BEA
(Tuxedo, Top End [1, 22]), and IBM (CICS [13]), to name
a few. The main thrust of a TP monitor is to coordinate
transactions through a TP system, but TP monitors do offer

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
of

 L
oc

al
 R

es
p.

Local Response Time (sec.)

No Profiling
Profiling

0 0

600

1200

1800

2400

10

20

30

40

50 3000

No Profile Profile No Profile Profile

Small QueriesLarge Queries

38

33

90

2530

E
xt

er
na

l C
om

pl
et

io
ns

Figure 9. Profiling Results

priority queuing and load balancing [2]. The priorities are
controlled by the applications, not through profiling, and
their load balancing just tries to keep the machines in the
TP system equally busy.

8. Future Work

We have identified a number of areas for future work. We
described some mechanisms in Section 4, for example the
buffer manager, that we believe to be useful, but we have
not yet demonstrated that fact with experiments. Another
issue with our current prototype is that it can be unfair be-
cause small requests can keep large requests from starting.
The grouping of multiple external requests into a transac-
tion presents additional challenges to the PA from the per-
spective of locking and resource consumption.

9. Conclusions

We identified the potential performance dangers of al-
lowing external access to an existing information system.



www.manaraa.com

We believe organizations should address this problem be-
fore allowing external access. We offer the PA as a general
solution that can, with little effort, protect most sites with-
out requiring changes to the underlying system or any of the
programs that the site uses for local access.

We described how load control, request profiling, buffer-
ing, and priority scheduling can be combined to form an
elegant, novel solution. We demonstrated the need for load
control, and that MPL and spacing effectively limit the im-
pact of external requests, even in the presence of updates.
Feedback is used to obtain a dynamic MPL that allows the
PA to respond to changes in local workload. Profiling en-
ables the administrator to base scheduling decisions on the
resource requirements of a job. In particular, we showed
that discriminating between large and small jobs improved
the processing of the small requests by over 25 times while
only marginally slowing the large requests. All these fea-
tures working from the outside of the database combine to
provide a realistic and effective solution to a very real prob-
lem.

We believe that the demand for the PA will continue to
increase as Internet services, data mining, and data inte-
gration projects proliferate. We also believe that the ideas
presented in this paper can be quickly integrated with ex-
isting products like middleware tools, TP monitors, multi-
database systems, and database schedulers which implies
that commercial products with PA-like features should ap-
pear in the near future.

Acknowledgements: The authors would like to thank
Donko Donjerkovic for his work on the query profiler.

References

[1] J. M. Andrade. Open on-line transaction processing withthe
TUXEDO system.IEEE CompCon, 1992. also http://www.-
beasys.com/.

[2] P. Bernstein. Transaction processing monitors.Communi-
cations of the ACM, 33(11), November 1990.

[3] K. P. Brown, M. Mehta, M. J. Carey, and M. Livny. Towards
automated performance tuning for complex workloads. In
Proc. of the 20th VLDB Conf., Santiago, Chile, 1994.

[4] S. Chawathe et al. The TSIMMIS project: Integration of
heterogeneous information sources. InProc. of IPSJ Conf.,
pages 7–18, Tokyo, Japan, October 1994.

[5] D. L. Davidson and G. Graefe. Dynamic resource brokering
for multi-user query execution. InSIGMOD 95, pages 281–
292, San Jose, CA, 1995. ACM.

[6] P. Denning. The working set model for program behavior.
Communications of the ACM, 11(5):323–333, May 1968.

[7] W. Du, R. Krishnamurthy, and M.-C. Shan. Query opti-
mization in heterogeneous dbms. InProc. of the 18th VLDB
Conf., pages 277–291, 1992.

[8] D. Eichman. Ethical web agents. InElectronic Proc. of the
Second World Wide Web Conf. ’94: Mosaic and the Web,

1994. http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/-
Agents/eichmann.ethical/eichmann.html.

[9] J. L. Eppinger and S. Dietzen. Encina: Modular transac-
tion processing.IEEE CompCon, 1992. also http://www.-
transarc.com.

[10] C. Faloutsos, R. Ng, and T. Sellis. Predictive load control
for flexible buffer allocation. InProc. of the 17th Int’l VLDB
Conf., Barcelona, Spain, September 1991.

[11] D. Ferrari. Computer Systems Performance Evaluation.
Prentice Hall, 1978.

[12] R. B. Hagmann and D. Ferrari. Performance analysis of sev-
eral back-end database architectures.ACM Transactions on
Database Systems, 11(1):1–26, March 1986.

[13] IBM Corp. CICS product family home page. http://www.-
software.ibm.com/ts/cics/.

[14] IBM Corp. MVS workload manager / system resource
manager. http://www.s390.ibm.com/products/mvs/wlm/-
index.html.

[15] M. Koster. Guidelines for robot writers. http://info.-
webcrawler.com/mak/projects/robots/guidelines.html.

[16] M. Litzkow, M. Livny, and M. W. Mutka. Condor - a hunter
of idle workstations. InProc. of the 8th Intl. Conf. of Dis-
tributed Computing Systems, pages 104–111, June 1988.

[17] M. Mehta and D. J. DeWitt. Dynamic memory allocation for
multiple-query workloads. InProc. of the 19th VLDB Conf.,
Dublin, Ireland, 1993.

[18] M. Mehta, V. Soloviev, and D. J. DeWitt. Batch scheduling
in parallel database systems. InProc. of the 9th Intl. Conf.
on Data Engineering, Vienna, Austria, April 1993.

[19] MicroStrategy. http://www.strategy.com/.
[20] NCR DBQM. http://www3.ncr.com/teradata/dbqm.pdf.
[21] Platinum Technologies. http://www.platinum.com/.
[22] R. Smerik. An overview of TOP END.IEEE CompCon,

1992.
[23] M. Stonebraker et al. Mariposa: a wide-area distributed sys-

tem. VLDB Journal, pages 48–63, 1996.


